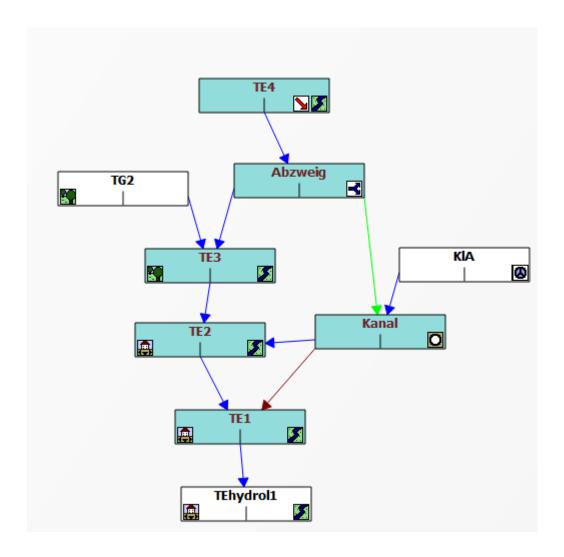


Integrierte hydrodynamische Modellierung für rückstaubeeinflusste Bereiche

Eva Loch NASIM Infotag 2025, 13. November 2025 Leipzig

Agenda - hydrodynamische Abflussberechnung in NASIM

- Einführung
- Einsatzbereiche
- Datenaufbereitung
- Besonderheiten
- Ergebnisauswertung
- Anwendungsgrenzen
- Zusammenfassung



Aufruf 11.11.25: https://www.eglv.de/medien/erster-sprung-ueber-die-emscher-fuer-buergerinnen/

Einführung: hydrodynamische Abflussberechnung in NASIM

- Option: Abfluss in Gewässerabschnitten, Kanälen und Speichern hydrodynamisch berechnen
- ▶ Alternative zu Kalinin-Miljukov-Verfahren/Speicherkaskade
- ▶ Pro Transportelement Abflussberechnung auswählen
 - hydrologisch = Kalinin-Miljukov-Verfahren
 - hydrodynamisch = hydrodynamischer Rechenkern (HDR)
- Nicht anwendbar für:
 - Kläranlagen
 - Teilgebietsabfluss
- Innerhalb eines NASIM-Modells beliebig viele hydrodynamische Bereiche/Abschnitte mit hydrologischer Berechnung mischen
- Hydrodynamische Berechnung profilweise -> entsprechende Daten benötigt

Einführung: hydrodynamische Abflussberechnung in NASIM

- ▶ Grundlage: eindimensionale Diffuse Wellengleichung
- ▶ Rückstau bis zur Fließrichtungsumkehr
- Profilescharfe Berechnung des Wellenablaufs
- Retentionsräume

	Dynamische Welle	Diffuse Welle	Kinematische Welle
Wellenausbreitung	✓	•	✓
Rückstau	~	✓	-
Wellendämpfung	✓	✓	-
Beschleunigung	✓	-	-

Einsatzbereiche der hydrodynamischen Abflussberechnung in **NASIM**

Welche Abschnitte sollte man auf jeden Fall hydrodynamisch rechnen?

- Von Rückstau beeinflusste Gewässerabschnitte
 - Rückstau und Fließrichtungsumkehr nur mit hydrodynamischer Berechnung möglich
- Automatische Bestimmung der Abflussmengen bei Gewässerverzweigungen
 - Für hydrologische Berechnung muss Aufteilung vorgegeben werden
- Profilscharfe Berechnung des Wellenablaufs
 - Inhomogene Bereiche, viele Brückenbauwerke
- Steuerung von Bauwerken: Wehrhöhen/Öffnungshöhen
 - Für hydrologische Berechnung nur Vorgabe des Abflusses
- Schmutzfrachtberechnung mit Stoffumsetzung
 - Stoffumsetzung (chemische Reaktionen) nur für hydrodynamische Berechnung wählbar

https://www.lubw.baden-wuerttemberg.de/wasser/beispielevermessung-und-umsetzung-in-gpro, Aufruf 7.11.25

Daten für die hydrodynamische Abflussberechnung in NASIM

Standard: hydrologisch (Kalinin-Miljukov)

- Charakteristische/Vereinfachte Werte
 - Pro Transportstrecke zusammengefasst aus Profildaten
 - Erstellung mit Querprofilverwaltung "Jabron"

- Kein Höhenbezugssystem nötig
 - Berechnung basiert auf Abflüssen und Wassertiefen
- ▶ Kanäle: Parametrisierung direkt in NASIM
 - Geometrie
 - Rauheit
 - Charakteristische Werte automatisch ermittelt

Option: hydrodynamisch (HDR)

- Profilweise: Eigenschaften des Profils für eindimensionale Berechnung aggregiert
 - Geometrie
 - Rauheit
 - Bewuchs nach DVWK220
 - Erstellung mit Querprofilverwaltung "Jabron"
- Sohlhöhen, Höhenbezugssystem
 - Berechnung basiert auf Wasserspiegellagen
 - Sohlhöhen schon von Jabron berücksichtigt!
- ➤ Kanäle: Parametrisierung direkt in NASIM
 - Geometrie + Sohllage
 - Rauheit
 - Geschlossene Profile mit Preissmannslot automatisch angelegt
- Option: Unterwasser Randbedingung wähle

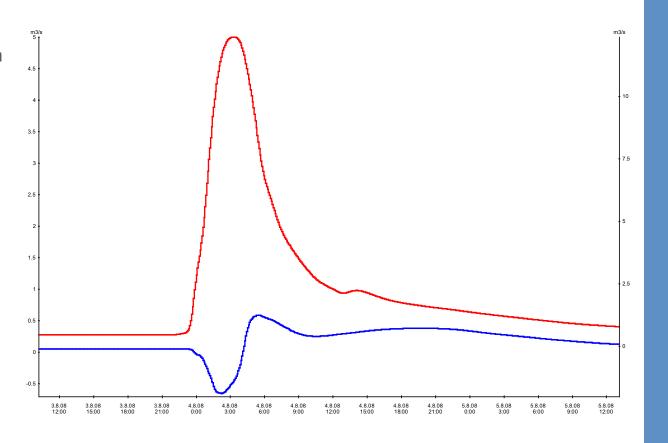
Besonderheiten der hydrodynamischen Abflussberechnung in NASIM

- Unterwasser-Randbedingung
 - Greift nur am unteren Rand eines hydrodynamischen Bereichs
 - ▶ Energieliniengefälle = Sohlgefälle
 - Energieliniengefälle vorgeben
 - Festen Unterwasserstand vorgeben
 - Unterwasserstand als Zeitreihe vorgeben
- ▶ Beispiel: Mündungsbereich
 - Hauptgewässer nicht mitrechnen
 - Stattdessen Unterwasserstand angeben
 - Rückstau und Fließrichtungsumkehr möglich
 - Unterwasser-Randbedingung kann zum Zufluss werden
 - Wechsel zwischen Abfluss und Zufluss bei Hochwasser oder tidebeeinflussten Gewässern

- Gewässerverzweigung
 - Abflussaufteilung automatisch
 - Angaben zur Aufteilung werden nicht verwendet
 - Stattdessen Wasserstände und Profileigenschaften (Abflussleistung)

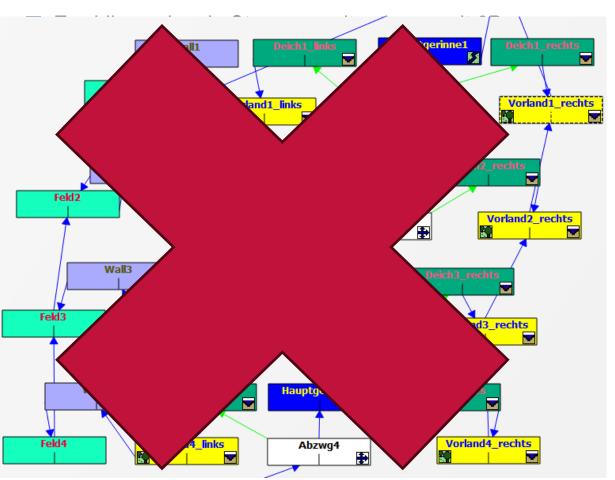
Aufruf am 7.11.25: https://de.wikipedia.org/wiki/Datei:Mainz_Luftbild_Rhein_Petersaue_li_Mainz_Zollhafen_re_Am%C3%B6neburg_Biebrich.jpg

Ergebnisauswertung mit hydrodynamischer Berechnung in NASIM



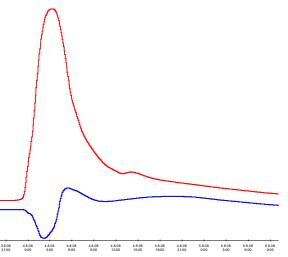
- Ausgaben
 - Abflüsse
 - Wasserspiegellagen
- ▶ Abflussganglinien richtig interpretieren
 - Sinkender Abfluss während Ereignis kann Rückstau sein
 - Abfluss und Wasserspiegel mit Unterliegern vergleichen
 - ▶ Negative Abflusswerte = Fließrichtungsumkehr

https://rp-online.de/nrw/staedte/geldern/wachtendonk-hochwasser-an-niers-und-nette-im-januar-2024_bid-104510475#0, Aufruf am 29.01.2025

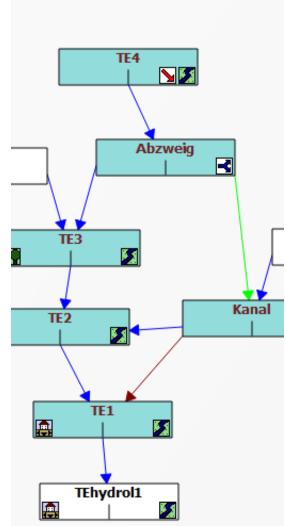

- Rot: Abfluss Hauptgewässer
- Blau: Abfluss Nebengewässer im Mündungsbereich

Anwendungsgrenzen

Überströmung durch verzweigte Profile abbilden



https://www.donau-ries-aktuell.de/natur-und-umwelt/der-riedstrom-als-wichtiger-teil-des-hochwasserschutzes-landkreis-85300, Aufruf am 7.11.25


Zusammenfassung

- NASIM bietet optionale, hydrodynamische Abflussberechnung (HDR) für Gewässerabschnitte und Kanäle
 - Rückstau
 - Unterwassereinfluss
- Direkte und einfach zu nutzende Integration eines hydrodynamischen Modells in ein hydrologisches konzeptionelles Modell
 - Alle Daten in einem Modell
 - Kein Austausch von Zeitreihen und anderen Ergebnissen und Parametern nötig
 - Damit Modellierung komplexen Abflusssituationen für breites Spektrum von Fragestellungen möglich
- Info: Wie bieten Schulungen & Support für Anwender

