

Städtische und natürliche Systeme Nachweisführung nach DWA-A 102-2 / BWK-A 3

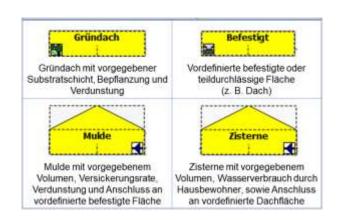
Grundsätze zur Bewirtschaftung und Behandlung von Regenwetterabflüssen zur Einleitung in Oberflächengewässer

Teil 2: Emissionsbezogene Bewertungen und Regelungen

Teil 3: Immissionsbezogene Bewertungen und Regelungen

Teil 4: Wasserhaushaltsbilanz für die Bewirtschaftung des Niederschlagswassers

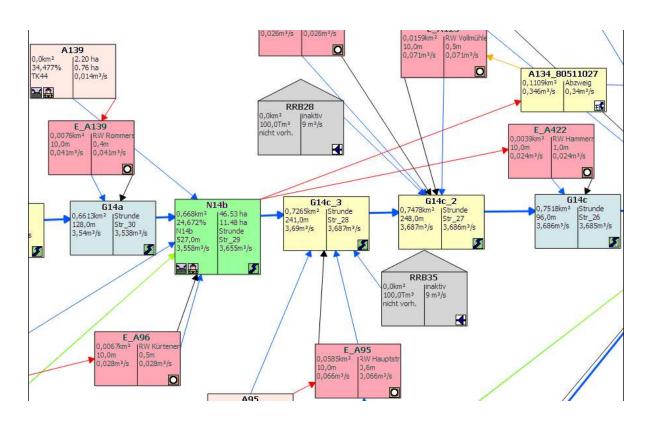
Heike, Schröder NASIM Infotag 2025, 13. November 2025 Leipzig

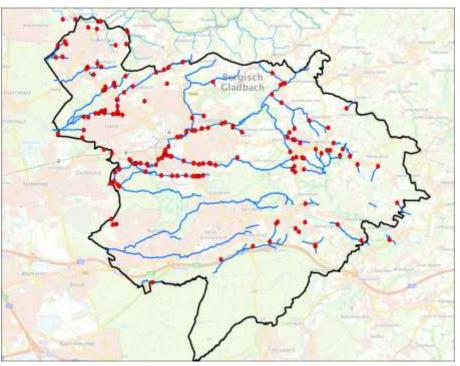

Inhalte DWA-A 102 / BWK-A 3



- ▶ Inhalte der Arbeits- und Merkblattreihe DWA-A/M 102 (BWK-A/M 3):
- Teil 1: Allgemeines, **Teil 2: Emissionsbezogene** Bewertungen und Regelungen, **Teil 3: Immissionsbezogene** Bewertungen und Regelungen, **Teil 4: Wasserhaushaltsbilanz** für die Bewirtschaftung des Niederschlagswassers, Teil 5: Hydromorphologische und biologische Verfahren zur immissionsbezogenen Bewertung
 - Arbeitsblatt ATV-A 128 "Richtlinien für die Bemessung und Gestaltung von Regenentlastungsanlagen in Mischwasserkanälen", Merkblatt ATV-DVWK-M 177 "Bemessung und Gestaltung von Regenentlastungsanlagen in Mischwasserkanälen Erläuterungen und Beispiele", Merkblatt DWA-M 153 "Handlungsempfehlungen zum Umgang mit Regenwasser" in modifizierten Entwässerungssystemen oder in Trenngebieten enthält,
 - Merkblatt BWK-M 3 "Ableitung von immissionsorientierten Anforderungen an Misch- und Niederschlagswassereinleitungen unter Berücksichtigung örtlicher Verhältnisse" für das vereinfachte Nachweisverfahren
 - Merkblatt BWK-M 7 "Detaillierte Nachweisführung immissionsorientierter Anforderungen an Misch- und Niederschlagswassereinleitungen"
- **kombinierter Ansatz aus Emissions- und Immissionsbetrachtung**: aufeinander abgestimmtes, in sich geschlossenes technisches Regelungswerk,

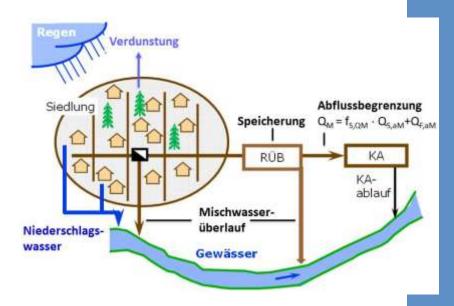
- NASIM bildet den hydrologischen Wasserkreislauf "komplett" ab - Wasserbilanzmodell
 - Berechnung der in **Teil 4** geforderten Nachweisgrößen:
 - Gesamtabfluss
 - Grundwasserneubildung
 - Verdunstung
 - Vergleich der berechneten Parameter für verschiedene Systemzustände (unbebaut – bebaut)
 - Abbildung Komponenten der Regenwasserbewirtschaftung

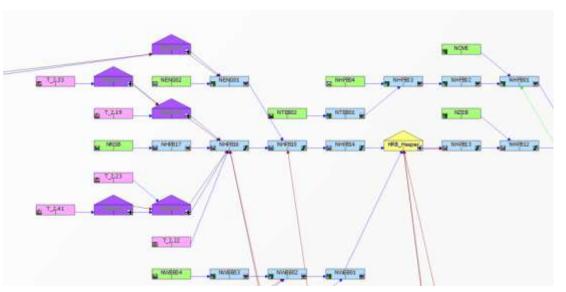




Städtische und natürliche Systeme

- ▶ Abbildung aller relevanten Ströme in einem System
- ▶ Flussgebiet oder "kleines" Baugebiet
- Nachweisführung beliebige Anzahl an Einleitungen
 - Hydrologisch und
 - stofflich

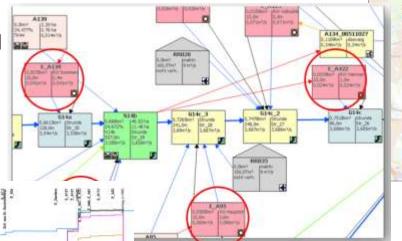


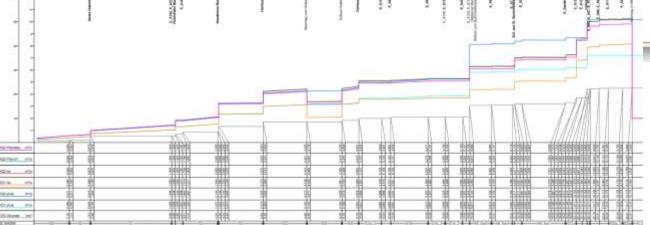

Ziel: Guter Zustand der Gewässer

- Belastungen durch Regenwetterabflüsse (Misch- und Niederschlagswassereinleitungen) so begrenzen, dass die biologischen Qualitätskomponenten die für einen "guten ökologischen Zustand" erforderlichen Werte erreichen
- Begrenzung der Entlastungmenge in die Gewässer
- Begrenzung Gesamtemission Kanalisation / Kläranlage
- Regenwasserbewirtschaftung > Annäherung an den natürlichen Wasserhaushalt

Wesentliche Einflussgrößen

- Angeschlossene (abflusswirksame) Fläche
- Flächennutzung (Flächenkategorisierung)
- Trockenwetterabfluss
- Drosselabgaben
- Speichervolumen
- Bauwerke der Regenwasserbehandlung (Verfahren)
- ▶ Elemente der blau-grünen Infrastruktur
- Nachweisführung hydrologisch und stofflich in NASIM mit einem Modell möglich



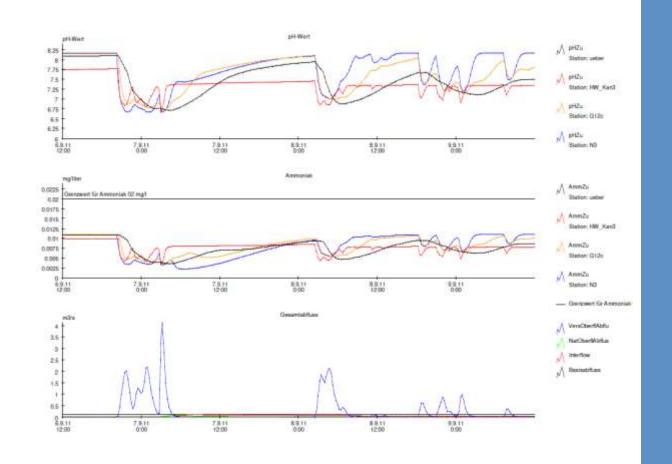


▶ NASIM wird seit vielen Jahren für die detaillierte Nachweisführung nach BWK M3/M7 verwendet (> 100 Projekte)

Anwendungsbeispiel aus dem Projekt P2303: Nachweis der Gewässerverträglichkeit von Einleitungsabflüssen nach BWK M7 für die Stadt Bergisch Gladbach

Hydrologischer Nachweis über Vergleich HQ1/HQ2 Planzustand mit HQ1/HQ2 pnat-Zustand mit Hilfe des hydrologischen Längsschnitts

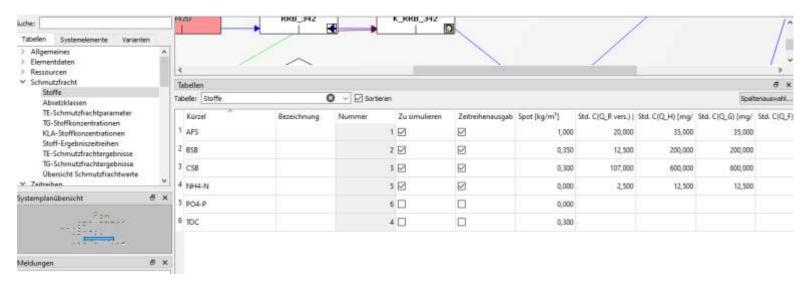
- ▶ Bei Überschreitung von HQ2pnat muss der Einleitungszufluss gedrosselt werden
 - Drosselabfluss und Volumenbemessung iterativ Betrachtung mehrerer Einleitstellen in Kombination
 - Bemessung von Rückhaltemaßnahmen z.B. über den NASIM-Optimierer
- ▶ Abschließende Simulation mit Darstellung des Ergebnisses im Längsschnitt zur Nachweisführung


Minimaler und maximaler Wert für das Beckenvolumen	Bereich, in dem die Beckenvolumina zu variieren sind.
Minimaler und maximaler Wert für die Drossel	Bereich, in dem die Drosseln des Beckens zu variieren sind.
Kostenfunktionstyp	Im System sind Typen von Kostenfunktionen hinterlegt. Der Nutzer wählt eine dieser Typen aus.
Faktor der Kostenfunktion	Mit diesem Wert wird der Kostenfunktionstyp an das konkrete Becken angepasst

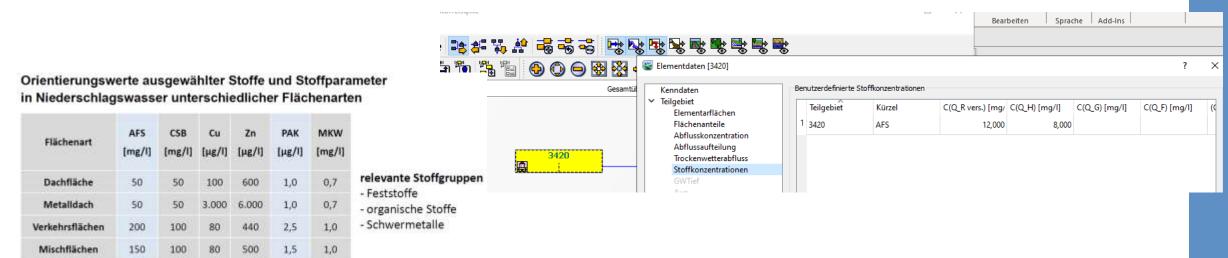
Hochwasserjährlichkeit	Soll HQ ₁ , HQ ₂ oder HQ ₃ eingehalten werden?
Max. Abfluss/Zufluss bei der Hochwasserjährlichkeit	Einzuhaltender HO _x Wert.
Überschreitungskosten	Monetarisierung: Kosten pro überschrittenen m $_3$ /s: $\frac{\epsilon}{m^3/_S}$

- Detaillierte stoffliche Nachweisführung mittels Schmutzfrachtsimulation
- Definierte Stoffe werden für verschiedene Abflusskomponenten definiert
 - Regenwasserabfluss versiegelter Flächen
 - Regenwasserabfluss natürlicher Flächen
 - Regenwasserabfluss Interflow/Baseflow
 - Trockenwetterabflüsse
- Schmutzfrachtsimulation (Mischungsrechnung) über den Simulationszeitraum für alle Systemelemente (Teilgebiete, Kanäle, Bauwerke, Gewässer..)
- Ausgabe von Fracht und Konzentration für alle Systemelemente bilanziert (z.B. Summe pro Jahr) und/oder als Ganglinie

Vergleich der berechneten Stoffkonzentrationen an den Bauwerken / Einleitstellen mit den Vorgaben zur Nachweisführung


- Erhebung der angeschlossenen Flächen und Kategorisierung
- Die Zuordnung von Stoffen erfolgt in NASIM Teilgebietsweise für die jeweiligen Abflusskomponenten (Qvers, Qnat, Qint, Qbas)
- ▶ Eine Zuordnung von Stoffen in Abhängigkeit der Nutzung ist nicht möglich
- Für die Angabe von Stoffen (z.B. AFS63) müssen die Flächen vor der Modellierung im GIS ausgewertet werden. Dem Teilgebiet wird dann die mittlere Fracht in NASIM zugewiesen oder
- ▶ das Teilgebiet wird entsprechend der Nutzung in mehrere Teilgebiete unterteilt

Belastungs- kategorie	Kategorie I Unbelastetes Niederschlags- wasser	Kategorie II Schwach belastetes Niederschlags- wasser	Kategorie III Stark belastetes Niederschlags- wasser	
Behandlungs- bedürftigkeit	nicht behandlungs- bedürftig	behandlungs- bedürftig	behandlungs- bedürftig	
Fläche in ha	5,71	3,35	-	
AFS63	50 mg/l	95 mg/l	660 mg/l	



Globale Stoffe

oder/und Stoffe spezifisch für jedes Teilgebiet

Absetzung bei hydrodyn. Berechnung

- Definition Kanalbauwerke
- Absetzklassen und Zuweisung
- ▶ Spülstoß (im Bauwerk)

Speicher

Oberfläche:

Kanalnetz

Topologie:

Überlauf:

V_spül:

Beckengröße:

Volumen bei Einstau: 0,0010

Volumen Kanalnetz: 0,0000

Beckentyp: Fangbecken

Weiterleitung KA: 0,155

25,0

Schmutzfrachtsimulation Absetzklasse:

SKU (A128):

Durchlaufbecken

Verbundbecken

- m² \

♣ Tm³ ∨

↑ Tm³ ∨

Tm³

\$ %

Elementdaten [RUEB2.12]

Kenndaten

> Gerinne

> Abzweig

> Speicher

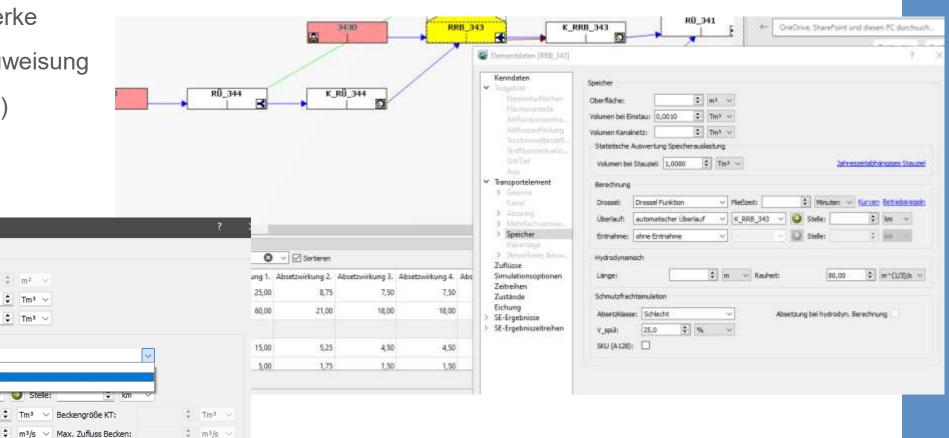
Zuflüsse

Zeitreihen

Zustände

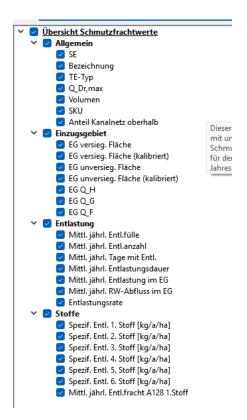
Kalibrierung

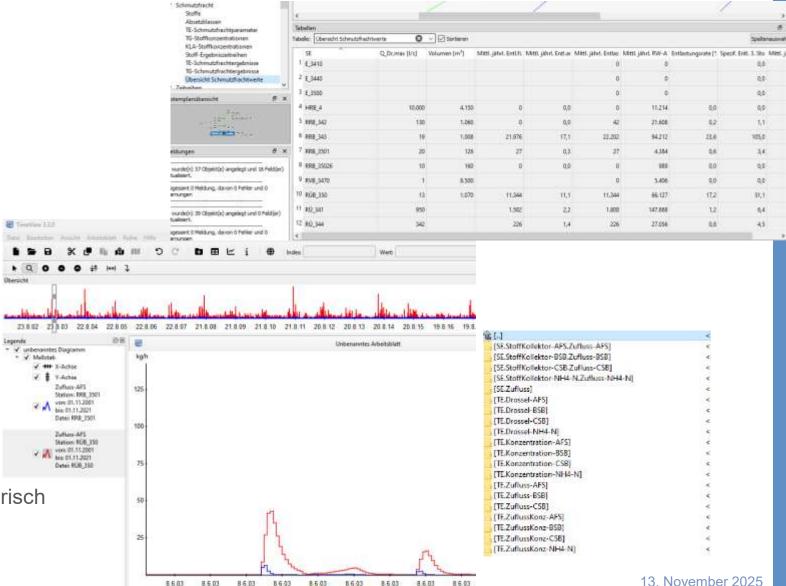
SE-Ergebnisse SE-Ergebniszeitreihen


> Mehrfachverzwei.

> Steuerbares Bauw.

Simulationsoptionen


✓ Transportelement


> Teilgebiet

Übersicht Schmutzfrachtwerte

- Beispiel: Detaillierter Nachweis der Ammoniak-Toxizität
- Für den Nachweis wurden die Stoffe Akalinität (ALK), gelöste Karbonate (cT), Gesamtstickstoff bzw. Ammoniumstickstoff (Nges bzw. NH4-N) als feste Konzentrationen für unterschiedliche Abflussanteile vorgegeben und in NASIM konventionell gemischt.
- Der pH-Wert kann als logarithmischer Wert nicht in der Mischungsrechnung ermittelt werden. Er wird daher im Anschluss an die Modellsimulation aus ALK und cT als neue Zeitreihe berechnet.
- ▶ Aus pH-Wert und Nges/NH4-N wird Ammoniak berechnet
- AFS und BSB5 werden direkt in NASIM berechnet

Stoffe	Abk.		Modell	Zwischener	g.	Ergebnis
Abfiltrierbare Stoffe	AfS	=>		=>		AfS*
Alkalinität	ALK	=>		=> ALK*	pH ¹	
Gelöste Karbonate	cT	=>	NASIM (Mischung)	=> cT*		Ammoniak ²
Gesamtstickstoff	Nges	=>		=>	Nges*	
Biol. Sauerstoffbedarf	BSB5	=>		=> BSB5*		

 $^{^{1}}$: pH = -log((10^{-6.3}·cT*-10^{-6.3}·ALK*)/ALK*)

²_: NH3-N = 1/(10(Pks-pH) + 1) · NH4-N (Pks wird mit WT berechnet)

Optional: hydrodynamische Berechnung (NASIM HDR)

Kalinin-Miljukov

- Mischungsrechnung
- Pro Systemelement
- ▶ Absetzraten und Spülstoß in Speichern
- Kläranlagen (Vorgabe Ablaufkonzentration)

hydrodynamisch

- Advektions-Diffusionsgleichung
 - Diffusionskoeffizient durch Nutzer editierbar
- Pro Profil (innerhalb Systemelement)
- Sinkgeschwindigkeit statt Absetzrate, Spülstoß analog
- ➤ Kläranlagen hydrologisch
- Zusätzlich Stoffumsetzung

Kürzel

3 02

StreeterPhelps

Saumstoff

Nachweisführung nach DWA-A 102 / BWK-A 3 mit NASIM

12,000

4,000

- ▶ Input: BSB5, Wassertemperatur-ZR
- ▶ Einleitung an Stelle KM zwischen TG-Grenzen
- Ermittlung der Grenzwerte als f(Dauer)
- Absetzung O2? Differenzierung
- Randbedingungen für Nicht-HDR-Gewässer: 0

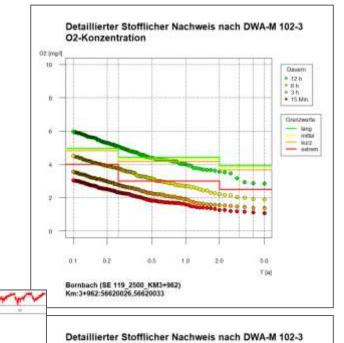
Ø

83

CFL-Zahl für Advektion [normiert] Faktor für den Diffusionskoeff. nach Elder [normiert]

Messwertvergleich: Amplitude

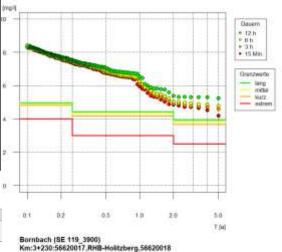
O - Sorteren


2 1


15

38

Sortieren
Sortieren


Streeter-Phelps (2do Optionen variieren)

Faktor für den Anteil der Instationaritätsdiffusion [normiert]

Konst. Anteil für den Diffusionskoeff. [m2/s]

Städtische und natii Nachweisfin

Grundsätze zur B

Teil 2: Emissionsbez

Teil 3: Immissionsbez

Teil 4: Wasserhaushalt

Heike, Schröder

NASIM Infotag 202

Leipzig

d natiii Oank für Ihre Vielen Dank für Ihre Aufmerksamkeit

mper 2025

ang in Oberflächengewässer