

Delft-FEWS als zentralisiertes Frühwarnsystem

Starkregenvorsorge – cloudbasiertes Vorhersage- und Warnsystem für Kommunen

Hendrik Burkamp
Delft-FEWS Anwendertreffen 2022

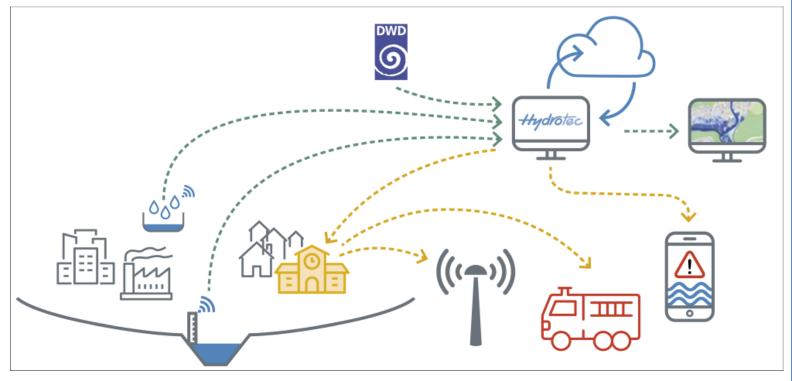
Inhalt

- Hintergrund
 - Problemstellung
 - Zentrales Frühwarnsystem
- Umsetzung
 - Technikkonzept
 - Systemzugang für Anwender
 - Datenquellen
 - Externe Einbindung
- Ausblick
 - Hydraulische Prognosen in 2D
 - Webclients
 - Weitere Umweltdaten

Hintergrund

Hintergrund – Problemstellung

- Herausforderungen auf kommunaler Ebene nehmen zu
 - Veränderung des Klimas erhöht das Risiko
 - Stetige Entwicklung der Nutzflächen erhöht das Schadenspotential
 - Bürger stellen Anspruch an Kommunen zur Frühwarnung
- Bedarf an Umweltdaten und deren Interpretation
 - Automatische Akkumulation und Verarbeitung
 - Verbreiten von Frühwarnungen
 - Steuerung von Schutzanlagen
- Nicht alle Akteure sind in der Lage die Aufgabenstellung selbst zu bearbeiten
 - ▶ Mangel an Expert*innenwissen und / oder Zeit
 - Ressourcen für eine entsprechende IT-Infrastruktur fehlen


Zentralisierung eines Frühwarnsystems

Hintergrund – Zentrales Frühwarnsystem

- ▶ Einrichtung einer Delft-FEWS Instanz in einem externen Rechenzentrum
 - Erreichbarkeit und ausreichend Ressourcen mit entsprechender Verfügbarkeit
 - Regelmäßige offsite-Backups mit großen räumlichen Abständen
 - Redundanz schaffen durch mehrere Master Controller an verschiedenen Orten
- Assimilierung verschiedenster OpenData-Produkte und eigener Datensätze
 - Meteorologie
 - Hydrologie
 - Topologie
 - Fachdatensätze
 - >
- Weitergabe aufbereiteter Daten
 - Standardisierte Warnmeldungen
 - Spezielle Reports
 - Rohdaten
 - >

Umsetzung

Umsetzung – Technikkonzept

- ▶ IT-Infrastruktur wird durch Hydrotec bereitgestellt
 - Cloud Computing in einem externen Rechenzentrum (z.B. Amazon AWS, Microsoft Azure)
 - Dynamische Erweiterung durch automatisierte Installation von Delft-FEWS innerhalb von Docker Containern
 - Persistenz der zentralen Datenbank im Dateisystem der virtualisierten Hardware

Hardware im Rechenzentrum

Hardware

VM mit Docker

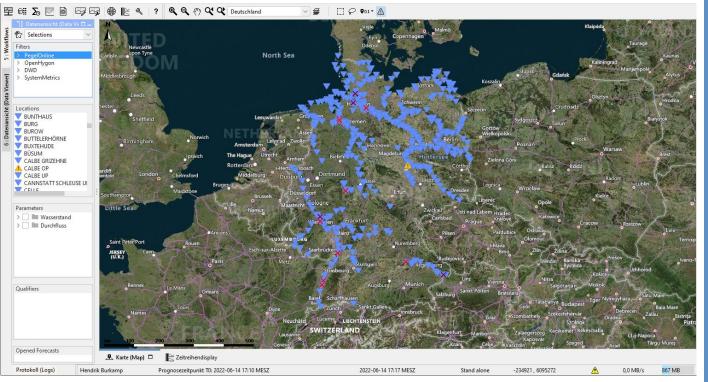
VM mit Docker

Virtualisierte Hardware

Master Controller

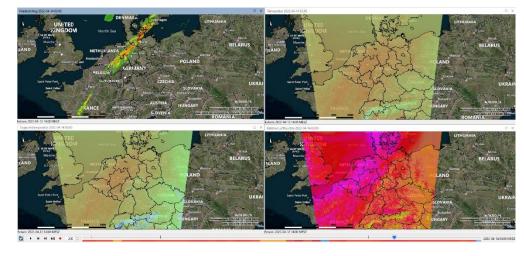
Forecasting Shell Server

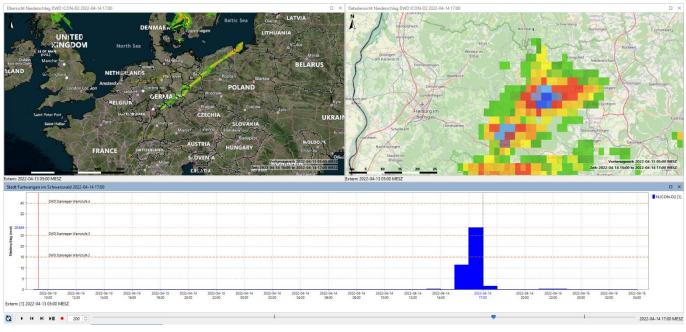
Forecasting Shell Server


Container

Umsetzung – Systemzugang für Anwender I

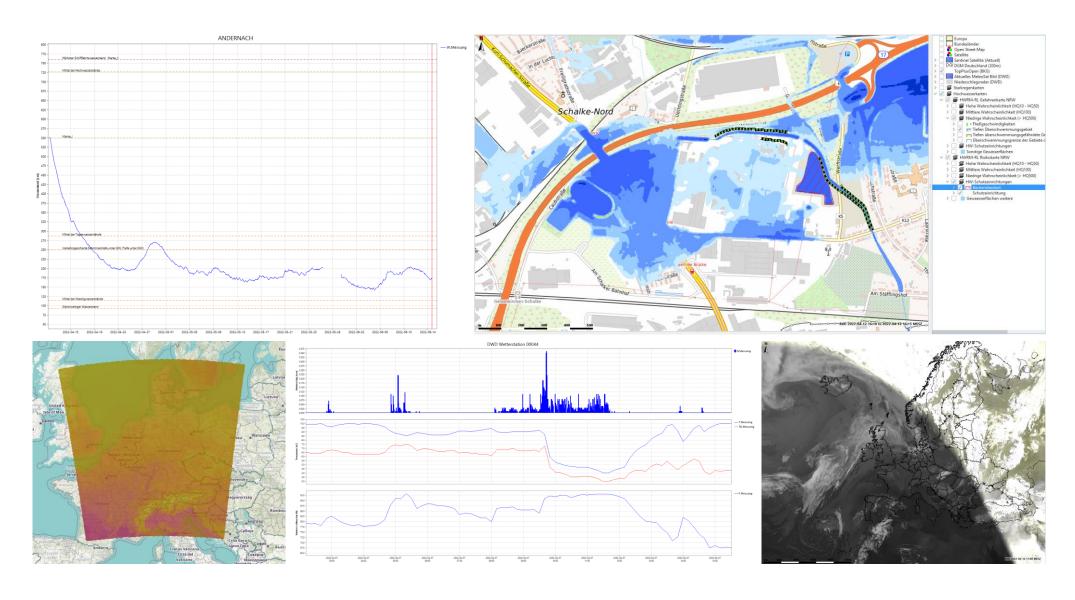
- ▶ Bereitstellung einer Client-Anwendung für die Endnutzer*innen
- Freigabe eines deutschlandweiten Standard-Datenpakets
 - DWD Open Data Produkte (Wetterstationen, Radar, NWP)
 - Messdaten von Pegelonline
 - Verschiedene WMS-Dienste (OpenStreetMap, Sattelitenbilder, HWGK)





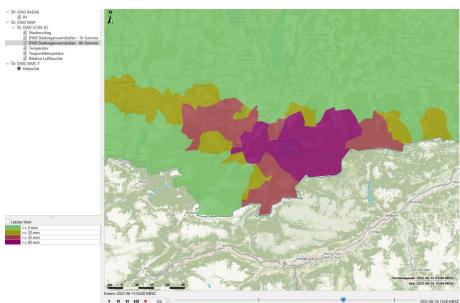
Umsetzung – Systemzugang für Anwender II

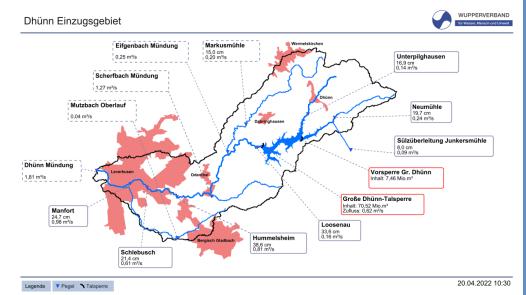
- ▶ Einrichtung kundenspezifischer Systembestandteile
 - Zugangsbeschränkung für ausgewählte Nutzer
 - ▶ Einbindung zusätzlicher Datensätze und Shapefiles
 - ▶ Erstellung eigener Displays und Workflows


Umsetzung – Datenquellen I

- Meteorologie
 - Deutscher Wetterdienst
 - ▶ Radarniederschläge, Wetterstationen
 - Numerische Wettermodelle, MOSMIX, Nowcasting
 - Warnmeldungen
 - Weitere potentielle Quellen
 - European Centre for Medium-Range Weather Forecasts, Koninklijk Nederlands Meteorologisch Instituut, etc.
- Hydrologie
 - Pegelonline
 - OpenHygon
- Sonstige Datensätze
 - OpenGeodata.NRW
 - Geoportal.de
 - Datensätze eigener Messeinrichtungen oder von dritten Dienstleistern
 - >

Umsetzung – Datenquellen II





Umsetzung – Externe Einbindung

- Warndienst
 - Auswertung von Grenzwertüberschreitungen
 - Automatisierte Generierung von SMS oder Emails
 - Bezug auf Shapefiles der Kunden möglich
- Reports
 - Erstellung beliebiger HTML- oder PDF-Reports
 - Füllung mit Grafiken und Textbausteinen
- Rohdaten aus der Delft-FEWS Datenbank
 - PI REST Web Service
 - Abfrage von Zeitreihen als XML oder JSON
 - WMS-T Web Mapping Service
 - Abfrage von 2D-Informationen als PNG
 - FEWS Schematic Status Display Web Services
 - Abfrage vordefinierter, dynamisch erzeugter SVG-Grafiken als PNG
 - Standard SSDs für Pegel, Becken oder Talsperren
 - ▶ Kundenspezifische SSDs für Einzugsgebiete, Systemschemata, ...

Quelle: Wupperverband

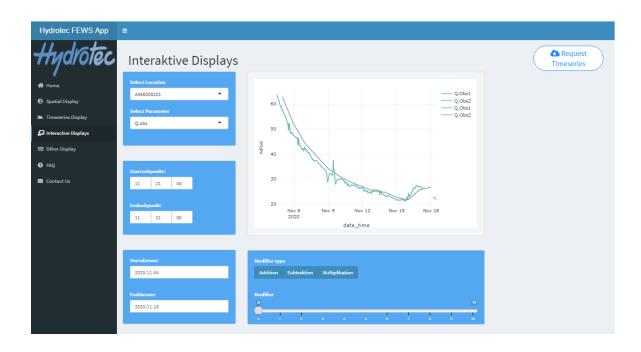
Ausblick

Ausblick - Hydraulische Prognosen in 2D I

- Hochwasservorhersage an Pegeln hat eine bewährte Methodik
 - NA-Modellierung z.B. in NASIM ist schnell und robust
 - 1D-hydraulische Modellierung kann komplexere Systeme abbilden
 - Gute Vergleichbarkeit mit Wasserstandsganglinien zum Abschätzen der Modellgüte
 - Auswertung bekannter Grenzwerte zur Einrichtung von Frühwarnungen
 - >
- Für die operationelle Vorhersage von Starkregenereignissen und deren Abflüssen gibt es diese Methodik nicht
 - 2D-hydraulische Modelle rechnen (noch) um ein Vielfaches langsamer meist deutlich langsamer als Echtzeit
 - Daher vorab Erstellung von Starkregengefahren- und -risikokarten aus synthetischem Niederschlag
 - **Problem:** Wie leite ich Informationen aus den Karten mithilfe einer DWD ICON-D2 Vorhersage ab?
 - KI-Ansätze sind Gegenstand der aktuellen Forschung

Ausblick – Hydraulische Prognosen in 2D II

- Rasterbasierte Grobmodelle
 - Rechenzeiten werden deutlich kürzer
 - Operationelle Belastung mit NWP-Ergebnissen möglich
 - ▶ Berechnung nach Bedarf → FSS-Verwaltung durch Container
- Darstellung der Ergebnisse in Delft-FEWS
 - Viewer für Niederschlag und Abfluss am selben Ort
 - Auswertung der Ergebnisse auf Grenzwerte möglich
 - Überlagerung der Simulation mit Gefahrenkarten o.Ä.
- Diese Methodik ermöglicht:
 - Lokalisierung des auftretenden Abflusses
 - Vorwarnzeit entsprechend der gewählten NWP
 - Zielgerichtete Präventionsmaßnahmen statt lediglich Reaktion
 - Schachtdeckel prüfen
 - Mobile HWS-Anlagen bereit machen
 - Verklausung von Durchlässen entfernen
 - Sicherung kritischer Infrastruktur
 - > ...





Ausblick – Webclients

- Operator Clients sind Expertentools
 - Überfrachtung mit Informationen von nicht-Expert*innen
- Nutzung des Delft-FEWS Webservices für reduzierte Endnutzertools
 - Nur die Daten verfügbar machen, die gebraucht werden
 - Zugang über Browser lässt sowohl mobile Geräte als auch Desktops / Laptops zu
 - Datenansichten können in Apps, Homepages und internen Tools genutzt werden

Ausblick – Weitere Umweltdaten

- ▶ Herausforderungen sind nicht auf Wassermanagement limitiert Frühwarnsysteme sollten es auch nicht sein
 - Analysen von Temperaturprognosen zum Umgang mit Hitzewellen in Städten
 - ▶ Leistungsabschätzungen von Photovoltaikanlagen durch NWP
 - Warnung auf Windprognosen zur Vorbereitung auf Sturmereignisse

https://simple.wikipedia.org/wiki/Tornado ist lizenziert gemäß CC BY-SA

Vielen Dank für Ihre Aufmerksamkeit!